Journal of Organometallic Chemistry, 97 (1975) C43—C45
© Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

ALKYNYL THIOETHER COMPLEXES OF CHROMIUM, MOLYBDENUM AND TUNGSTEN

JOSEPH A. CONNOR* and GERALD A. HUDSON

Department of Chemistry, The University, Manchester M13 9PL (Great Britain)
(Received July 18th, 1975)

Summary

Treatment of MeSC=CSMe (L) with $[M(CO)_3 (MeCN)_3]$ (M = Cr, Mo, W) has given $[M(CO)L_3]$ (M = Mo, W) and $[Cr(CO)_2L_2]$ and the reactions of these π -acetylene complexes with ditertiary phosphines are described, it is suggested that trimerisation of L on chromium proceeds through a [4+2] π cycloaddition.

Very few π -acetylene complexes of the Group VI metals are known [1]. In particular, no simple π -acetylene derivative of $Cr(CO)_6$ has been described, although $[(\eta\text{-arene})Cr(CO)_2(R_2C_2)]$ and $[\eta\text{-}C_5H_5Cr(CO)(NO)(R_2C_2)]$ are well known [2]. Most of the work on acetylene complexes of the transition metals has concerned a relatively restricted range of alkyl and aryl acetylenes, particularly where the organic group is electron attracting (e.g. CF_3 , CO_2R). Apart from some recent work on alkynyl phosphines [3] and silanes [4], very little attention has been given to the organometallic chemistry of other hetero-substituted acetylenes. Despite the rapid development of the chemistry of alkynyl ethers and thioethers and their extensive application in organic synthesis [5], almost nothing [6] is known of their reactions with transition metals.

Reaction between [M(CO)₃ (MeCN)₃] (M = Mo, W) and 2,5-dithia-3-hexyne, MeSC \equiv CSMe (L), in ethanol produces the yellow crystalline complexes, [M(CO)L₃] in high yield (90-95%). These new compounds, which have been fully characterised by microanalysis and spectroscopy (for M = W, m.p. 448-452 K (dec.); ν (CO) 2081 (CH₂ Cl₂ solution) cm⁻¹; δ (CH₃) 2.78, δ (CH₃) 23.0 ppm; m/e 566 (100%)), most probably have structure I (M = Mo, W) similar to that [1] of [W(CO)(Ph₂ C₂)₃]; there is no evidence of sulphur coordination. The addition of the ditertiary phosphine Me₂ PCH₂ CH₂-PMe₂ (dmpe) to an equimolar quantity of [W(CO)L₃] in CH₂ Cl₂ solution

^{*}To whom correspondence should be addressed.

at room temperature rapidly produces the salmon pink complex [W(CO)-(dmpe)L₂](ν (CO) 1903 cm⁻¹; λ_{max} 488 nm). With excess dmpe, an insoluble white solid complex [W₂ L(dmpe)₅] is formed which may have the structure indicated by II. Hexakis(methylthio)benzene is not formed in these displacement reactions. Under similar conditions there is no detectable reaction between Ph₂ PCH₂ CH₂ PPh₂ and [W(CO)L₃]. A similar distinction in reactivity arises in the case of [W(CO)(Ph₂ C₂)].

$$R = SMe$$

$$(II)$$

$$R = SMe$$

$$R = SMe$$

$$(III)$$

$$R = SMe$$

The dropwise addition of a cooled solution of L in ether to $[Cr(CO)_3-(MeCN)_3]$ stirred in ether at 195 K and warming to allow reaction at 230 K in the dark, followed by removal of the volatile materials in the dark gives violet needles of $[Cr(CO)_2 L_2]$ (III) (Found: C, 35.0; H, 3.5; Cr, 14.8; S,37.0. $C_{10}H_{12}CrO_2 S_4$ calcd.: C, 34.9; H, 3.4; Cr, 15.0; S, 37.2%). This photosensitive compound is easily converted both in the solid state and, more rapidly, in solution to a mixture of products of which by far the major constituent is a brown crystalline solid complex cis- $[Cr(CO)_4 (L_3)]$ (IV) (ν (CO) 2023m, 1910s, 1879s (CH₂ Cl₂ solution) cm⁻¹), in which the chelating ligand is hexakis-(methylthio)benzene obtained by trimerisation of the acetylene, L. Destruction of IV gives pure C_6 (SMe)₆ (m/e 354). Addition of dmpe to III gave IV and, subsequently, cis- $[Cr(CO)_4 (dmpe)]$.

The surprising contrast in the constitution of I and III, with the observation that trimerisation of L occurs from III but not from I under comparable conditions, may suggest that trimerisation occurs as a result of a [4+2] π -cycloaddition, as in the case [7] of $[\eta-C_5H_5Nb(CO)(Ph_4C_4)(Ph_2C_2)]$, rather than as a result of a [2+2+2] π -cycloaddition [8].

The reactions of L and other alkynyl thioethers with a variety of organometallic compounds have been examined and the results will be reported in due course.

We thank the S.R.C. for support.

References

- 1 R.M. Laine, R.E. Moriarty and R. Bau, J. Amer. Chem. Soc., 94 (1972) 1402.
- W. Strohmeier and H. Hellmann, Chem. Ber., 98 (1965) 1598;
 M. Herberhold and H. Alt, J. Organometal. Chem., 42 (1973) 407.
- 3 R.B. King and A. Efraty, Inorg. Chem., 8 (1969) 2374; A.J. Carty and A. Efraty, Inorg. Chem., 8 (1969) 543;
 - H.N. Paik, A.J. Carty, M. Mathew and G.J. Palenik, J. Chem. Soc. Chem. Commun., (1974) 946.
- 4 H. Sakurai and J. Hayashi, J. Organometal. Chem., 39 (1972) 365; K.H. Pannell and G.M. Crawford, J. Coord. Chem., 2 (1973) 251.
- 5 L. Brandsma, H.J.T. Bos and J.F. Arens, in H.G. Viehe (Ed.) Chemistry of Acetylenes, Marcel Dekker, New York, 1969.
- 6 A. Messeguer, F. Serratosa and J. Rivera, Tetrahedron Lett., (1973) 2895.
- 7 A.N. Nesmeyanov, A.I. Gusev, A.A. Pasynskii, K.N. Anisimov, N.E. Kolobova and Y.T. Struchkov, Chem. Commun., (1969) 739.
- 8 F.D. Mango, Coord. Chem. Rev., 15 (1975) 109.